
Chapter 14

Davenport-Schinzel Sequences

The complexity of a simple arrangement of n lines in R
2 is Θ(n2) and so every algorithm

that uses such an arrangement explicitly needs Ω(n2) time. However, there are many
scenarios in which we do not need the whole arrangement but only some part of it. For
instance, to construct a ham-sandwich cut for two sets of points in R

2 one needs the
median levels of the two corresponding line arrangements only. As mentioned in the
previous section, the relevant information about these levels can actually be obtained in
linear time. Similarly, in a motion planning problem where the lines are considered as
obstacles we are only interested in the cell of the arrangement we are located in. There
is no way to ever reach any other cell, anyway.

This chapter is concerned with analyzing the complexity—that is, the number of
vertices and edges—of a single cell in an arrangement of n curves in R

2. In case of a
line arrangement this is mildly interesting only: Every cell is convex and any line can
appear at most once along the cell boundary. On the other hand, it is easy to construct
an example in which there is a cell C such that every line appears on the boundary ∂C.

But when we consider arrangement of line segments rather than lines, the situation
changes in a surprising way. Certainly a single segment can appear several times along
the boundary of a cell, see the example in Figure 14.1. Make a guess: What is the
maximal complexity of a cell in an arrangement of n line segments in R

2?

Figure 14.1: A single cell in an arrangement of line segments.
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You will find out the correct answer soon, although we will not prove it here. But
my guess would be that it is rather unlikely that your guess is correct, unless, of course,
you knew the answer already. :-)

For a start we will focus on one particular cell of any arrangement that is very easy to
describe: the lower envelope or, intuitively, everything that can be seen vertically from
below. To analyze the complexity of lower envelopes we use a combinatorial descrip-
tion using strings with forbidden subsequences, so-called Davenport-Schinzel sequences.
These sequences are of independent interest, as they appear in a number of combinatorial
problems [2] and in the analysis of data structures [7]. The techniques used apply not
only to lower envelopes but also to arbitrary cells of arrangements.

14.1 Davenport-Schinzel Sequences

Definition 14.1 A (n, s)-Davenport-Schinzel sequence is a sequence over an alphabet
A of size n in which� no two consecutive characters are the same and� there is no alternating subsequence of the form . . .a . . .b . . .a . . .b . . . of s + 2

characters, for any a,b ∈ A.

Let λs(n) be the length of a longest (n, s)-Davenport-Schinzel sequence.

For example, abcbacb is a (3, 4)-DS-sequence but not a (3, 3)-DS-sequence because it
contains the subsequence bcbcb.

Let F = {f1, . . . , fn} be a collection of real-valued continuous functions defined on
a common interval I ⊂ R. The lower envelope LF of F is defined as the pointwise
minimum of the functions fi, 1 6 i 6 n, over I. Suppose that any pair fi, fj, 1 6 i <

j 6 n, intersects in at most s points. Then I can be decomposed into a finite sequence
I1, . . . , Iℓ of (maximal connected) pieces on each of which a single function from F defines
LF. Define the sequence φ(F) = (φ1, . . . ,φℓ), where fφi

is the function from F which
defines LF on Ii.

Observation 14.2 φ(F) is an (n, s)-Davenport-Schinzel sequence.

In the case of line segments the above statement does not hold because a set of line
segments is in general not defined on a common real interval.

Proposition 14.3 Let F be a collection of n real-valued continuous functions each of
which is defined on some real interval. If any two functions from F intersect in at
most s points then φ(F) is an (n, s+ 2)-Davenport-Schinzel sequence.

Proof. Let I denote the union of all intervals on which one of the functions from F is
defined. Consider any function f ∈ F defined on [a,b] ⊆ I = [c,d]. Extend f on I by
extending it using almost vertical rays pointing upward, from a use a ray of sufficiently
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small slope, from b use a ray of sufficiently large slope. For all functions use the same
slope on these two extensions such that no extensions in the same direction intersect.
By sufficiently small/large we mean that for any extension ray there is no function
endpoint nor an intersection point of two functions in the open angular wedge bounded
by the extension ray and the vertical ray starting from the same source.

Denote the resulting collection of functions totally defined on I by F ′. If the rays are
sufficiently close to vertical then φ(F ′) = φ(F).

For any f ∈ F ′ a single extension ray can create at most one additional intersection
with any g ∈ F ′. (Let [af,bf] and [ag,bg] be the intervals on which the function f and
g, respectively, was defined originally. Consider the ray r extending f from af to the left.
If af ∈ [ag,bg] then r may create a new intersection with g, if af > bg then r creates a
new intersection with the right extension of g from bg, and if af < ag then r does not
create any new intersection with g.)

On the other hand, for any pair s, t of segments, neither the left extension of the
leftmost segment endpoint nor the right extension of the rightmost segment endpoint
can introduce an additional intersection. Therefore, any pair of segments in F ′ intersects
at most s + 2 times and the claim follows. �

Next we will give an upper bound on the length of Davenport-Schinzel sequences for
small s.

Lemma 14.4 λ1(n) = n, λ2(n) = 2n− 1, and λ3(n) 6 2n(1 + logn).

Proof. λ1(n) = n is obvious. λ2(n) = 2n − 1 is given as an exercise. We prove
λ3(n) 6 2n(1 + logn) = O(n logn).

For n = 1 it is λ3(1) = 1 6 2. For n > 1 consider any (n, 3)-DS sequence σ of length
λ3(n). Let a be a character that appears least frequently in σ. Clearly a appears at
most λ3(n)/n times in σ. Delete all appearances of a from σ to obtain a sequence σ ′ on
n−1 symbols. But σ ′ is not necessarily a DS-sequence because there may be consecutive
appearances of a character b in σ ′, in case that σ = . . .bab . . ..

Claim: There are at most two pairs of consecutive appearances of the same char-
acter in σ ′. Indeed, such a pair can be created around the first and last appearance
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of a in σ only. If any intermediate appearance of a creates a pair bb in σ ′ then
σ = . . .a . . .bab . . .a . . ., in contradiction to σ being an (n, 3)-DS sequence.

Therefore, one can remove at most two characters from σ ′ to obtain a (n− 1, 3)-DS-
sequence σ̃. As the length of σ̃ is bounded by λ3(n− 1), we obtain λ3(n) 6 λ3(n− 1) +
λ3(n)/n+ 2. Reformulating yields

λ3(n)

n
6

λ3(n− 1)

n− 1
+

2

n− 1
6 1 + 2

n−1
∑

i=1

1

i
= 1 + 2Hn−1

and together with 2Hn−1 < 1 + 2 logn we obtain λ3(n) 6 2n(1 + logn). �
Bounds for higher-order Davenport-Schinzel sequences. As we have seen, λ1(n) (no aba)
and λ2(n) (no abab) are both linear in n. It turns out that for s > 3, λs(n) is slightly
superlinear in n (taking s fixed). The bounds are known almost exactly, and they involve
the inverse Ackermann function α(n), a function that grows extremely slowly.

To define the inverse Ackermann function, we first define a hierarchy of functions
α1(n), α2(n), α3(n), . . . where, for every fixed k, αk(n) grows much more slowly than
αk−1(n):

We first let α1(n) = ⌈n/2⌉. Then, for each k > 2, we define αk(n) to be the number
of times we must apply αk−1, starting from n, until we get a result not larger than 1. In
other words, αk(n) is defined recursively by:

αk(n) =

{

0, if n 6 1;

1 + αk(αk−1(n)), otherwise.

Thus, α2(n) = ⌈log2 n⌉, and α3(n) = log∗ n.

Now fix n, and consider the sequence α1(n), α2(n), α3(n), . . .. For every fixed n, this
sequence decreases rapidly until it settles at 3. We define α(n) (the inverse Ackermann
function) as the function that, given n, returns the smallest k such that αk(n) is at most
3:

α(n) = min {k|αk(n) 6 3}.

We leave as an exercise to show that for every fixed k we have αk(n) = o(αk−1(n))

and α(n) = o(αk(n)).

Coming back to the bounds for Davenport-Schinzel sequences, for λ3(n) (no ababa)
it is known that λ3(n) = Θ(nα(n)) [4]. In fact it is known that λ3(n) = 2nα(n) ±
O(n

√

α(n)) [5, 6]. For λ4(n) (no ababab) we have λ4(n) = Θ(n · 2α(n)) [3].

For higher-order sequences the known upper and lower bounds are almost tight, and
they are of the form αs(n) = n · 2poly(α(n)), where the degree of the polynomial in the
exponent is roughly s/2 [3, 6].
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Realizing DS sequences as lower envelopes. There exists a construction of a set of n seg-
ments in the plane whose lower-envelope sequence has length Ω(nα(n)). (In fact, the
lower-envelope sequence has length nα(n) − O(n), with a leading coefficient of 1; it is
an open problem to get a leading coefficient of 2, or prove that this is not possible.)

It is an open problem to construct a set of n parabolic arcs in the plane whose
lower-envelope sequence has length Ω(n · 2α(n)).

Generalizations of DS sequences. Also generalizations of Davenport-Schinzel sequences
have been studied, for instance, where arbitrary subsequences (not necessarily an al-
ternating pattern) are forbidden. For a word σ and n ∈ N define Ex(σ,n) to be the
maximum length of a word over A = {1, . . . ,n}∗ that does not contain a subsequence of
the form σ. For example, Ex(ababa,n) = λ3(n). If σ consists of two letters only, say a

and b, then Ex(σ,n) is super-linear if and only if σ contains ababa as a subsequence [1].
This highlights that the alternating forbidden pattern is of particular interest.

Exercise 14.5 Prove that λ2(n) = 2n− 1.

Exercise 14.6 Prove that λs(n) is finite for all s and n.

Exercise 14.7 Show that every (n, s)-Davenport-Schinzel sequence can be realized as
the lower envelope of n continuous functions from R to R, every pair of which
intersect at most s times.

Exercise 14.8 Show that every Davenport-Schinzel sequence of order two can be real-
ized as a lower envelope of n parabolas.

Exercise 14.9 Let P be a convex polygon with n+ 1 vertices. Find a bijection between
the triangulations of P and (n, 2)-Davenport-Schinzel sequences of maximum length
(2n−1). It follows that the number of distinct maximum (n, 2)-Davenport-Schinzel
sequences is exactly Cn−1 =

1
n

(

2n−2

n−1

)

, which is the (n− 1)-st Catalan number.

Questions

63. What is an (n, s) Davenport-Schinzel sequence and how does it relate to the
lower envelope of real-valued continuous functions? Give the precise definition
and some examples. Explain the relationship to lower envelopes and how to apply
the machinery to partial functions like line segments.

64. What is the value of λ1(n) and λ2(n)?

65. What is the asymptotic value of λ3(n), λ4(n), and λs(n) for larger s?

66. What is the combinatorial complexity of the lower envelope of a set of n

lines/parabolas/line segments?
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